在微积分中,我们经常需要考虑符号对原函数或变换后的函数的影响。在本文中,我们将探讨如何通过符号来确定原函数和变换后的函数所处的象限。
http://www.easiu.com/common/images/20200522020723842.jpg
首先,让我们回顾一下平面直角坐标系中的象限。第一象限包含所有x和y坐标都为正数的点,第二象限包含所有x坐标为负数,y坐标为正数的点,第三象限包含所有x和y坐标都为负数的点,第四象限包含所有x坐标为正数,y坐标为负数的点。
现在,让我们考虑一些基本的函数形式,如$f(x)$和$f(-x)$。如果我们将这些函数图形绘制在平面直角坐标系中,我们可以看到它们分别位于第一象限和第二象限。这是因为当$x$为正数时,$f(x)$和$f(-x)$的符号相同,因此它们在第一象限中。当$x$为负数时,它们的符号不同,因此它们在第二象限中。
现在,让我们考虑一些更复杂的函数形式,如$f(-x)$和$f(-x^2)$。如果我们将这些函数图形绘制在平面直角坐标系中,我们可以看到它们分别位于第二象限和第三象限。这是因为当$x$为正数时,$-x$和$x^2$的符号相反,因此$f(-x^2)$的符号与$f(x)$的符号相反,这意味着它在第三象限中。当$x$为负数时,$-x$和$x^2$的符号相同,因此$f(-x^2)$的符号与$f(x)$的符号相同,这意味着它在第二象限中。
最后,让我们考虑一些更复杂的函数形式,如$f(-x^3)$和$f(-x^)$。如果我们将这些函数图形绘制在平面直角坐标系中,我们可以看到它们分别位于第三象限和第四象限。这是因为当$x$为正数时,$-x^3$和$x^$的符号相反,因此$f(-x^3)$的符号与$f(x)$的符号相反,这意味着它在第三象限中。当$x$为负数时,$-x^3$和$x^$的符号相同,因此$f(-x^3)$的符号与$f(x)$的符号相同,这意味着它在第四象限中。
通过了解符号对原函数和变换后的函数的影响,我们可以更好地理解函数的性质和行为。这对于解决微积分中的问题非常有用,例如确定函数的最大值和最小值,以及计算定积分。
一般卖灯具的地方遥控灯原理
三星显示器2492
新科ledtv 3206a背光
海尔双动力离合器构造
海信 d1-m
空调故障代码显示器
创维32寸电视不能开机
电陶炉 e3 故障
三星屏横线维修
美的空调p0换板子要多少钱
万宝全自动洗衣机显示E4
空调没电源指示灯不亮
帅康热水器不加热
格力家用空调公司
开不了机了显示e6格力
中央空调线控器接线图
华帝和海尔哪个灶具好
格力老空调不制冷
3842开关电源维修技巧
tcll50e5090了解无线